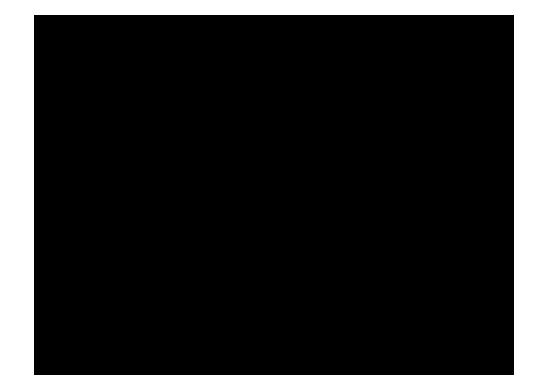
Learning visual language models for video understanding

Antoine Yang https://antoyang.github.io/

Visual language models

- Language is a fundamental aspect of human communication
- Vision is a fundamental aspect of human perception
- -> Developing machines that can process both is crucial e.g. for human-computer interaction, search, customer support, accessibility...

Example of a visually-aware chatbot



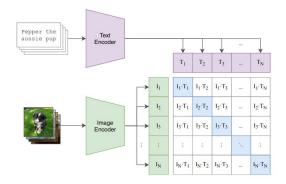
What are they doing? -> Martial arts

How many men are there? -> 2

What does a machine need to do that?

Question-answering ability

• Vision-language understanding



Why does the kid trust the man?

Scene understanding is not enough!

Because the man saved his life!

What else do we need?

Localizing events in time

• Multi-event reasoning

Applications: Beyond answering questions

Video-to-text summarization

This video is about a kid that learns kung fu. First the kid is attacked by 6 aggressors. A man appears and defeat them, thereby saving the kid's life. The kid then starts training with the man and becomes stronger day after day. He ends up winning a prestigious competition against his toughest aggressors.

• Improved navigation with automatically generated video chapters

How To Make The Perfect Pie

5.1 M de vues • il v a 4 ans

Tasty 🖉

Check us out on Facebook! - facebook.com/buzzfeedtasty Credits: https://www.buzzfeed.com/bfmp/videos/67858

Sous-titres

0.21

Pie Crust

Pumpkin Filling

7:37 Apple Pie

Antoine Miech (DeepMind)

Arsha Nagrani (Google)

Collaborators

Josef Sivic (CIIRC CTU Prague)

Paul Hongsuck Seo (Google)

lvan Laptev (Inria)

Cordelia Schmid (Inria / Google)

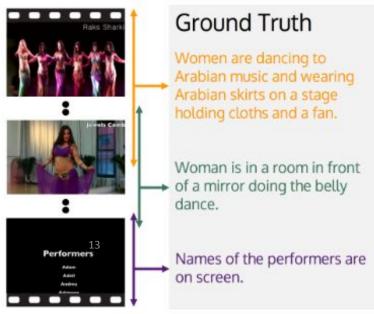
Jean Zay (IDRIS)

12

Jordi Pont-Tuset (Google)

Dense Video Captioning

- Task: generate temporally localized captions for all events in an untrimmed minutes-long video.
- Prior approaches (e.g. [Wang 2021]): are task specific and trained only on manually annotated datasets.

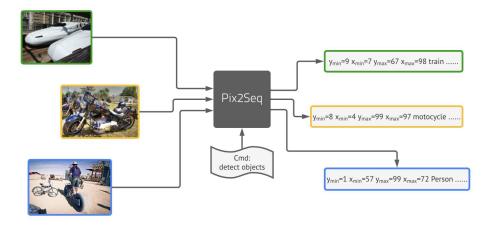


Example from the ActivityNet-Captions dataset [Krishna 2017].

[Krishna 2017] Dense-Captioning Events in Videos, Ranjay Krishna et al, ICCV 2017. [Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021.

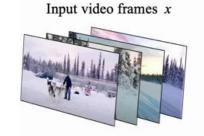
Localization as language modeling

- Pix2seq [Chen 2022] casts object detection as sequence generation.
- Spatial coordinates are quantized and tokenized.



The Vid2Seq model

- Formulates dense video captioning as a sequence-to-sequence problem.
- Time is quantized and jointly tokenized with the text.
- Model architecture: visual encoder, text encoder and text decoder.

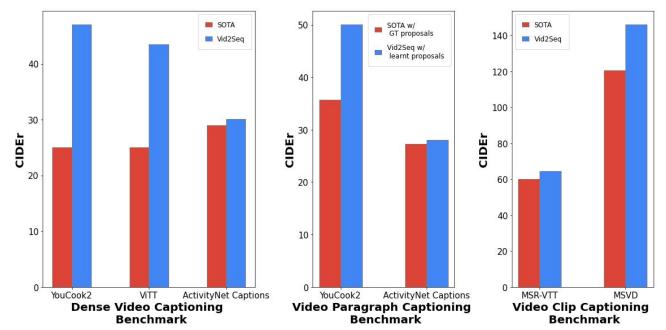


Input transcribed speech 3.02s \rightarrow 4.99s: Please stay calm! 42.87s \rightarrow 45.97s: Hey my friend!

Pretraining Vid2Seq on untrimmed narrated videos

- Speech is also cast as a single sequence of text and time tokens.
- Generative objective: given visual inputs, predict speech.
- **Denoising objective:** given visual inputs and noisy speech, predict masked speech tokens.

Vid2Seq is SoTA on video captioning tasks.



[Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021.

[Zhu 2022] End-to-end Dense Video Captioning as Sequence Generation, Wanrong Zhu et al, COLING 2022.

[Lei 2020] MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning, Jie Lei et al, ACL 2020.

[Seo 2022] End-to-end Generative Pretraining for Multimodal Video Captioning, Paul Hongsuck Seo et al, CVPR 2022.

[Lin 2022] SwinBERT: End-to-End Transformers with Sparse Attention for Video Captioning, Kevin Lin et al, CVPR 2022.

Vid2Seq has competitive event localization performance without task-specific design.

Model	YouCook2		Vi	TT	ActivityNet Captions		
	Recall	Precision	Recall	Precision	Recall	Precision	
SoTA	20.7	20.6	32.2	32.1	59.0	60.3	
Vid2Seq	27.9	27.8	42.6	46.2	52.7	53.9	

[Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021. [Zhu 2022] End-to-end Dense Video Captioning as Sequence Generation, Wanrong Zhu et al, COLING 2022.

Vid2Seq generalizes well to few-shot settings.

We also find that pretraining is crucial for few-shot generalization.

Data	YouCook2			ViTT			ActivityNet Captions		
	SODA	CIDEr	METEOR	SODA	CIDEr	METEOR	SODA	CIDEr	METEOR
1%	2.4	10.1	3.3	2.0	7.4	1.9	2.2	6.2	3.2
10%	3.8	18.4	5.2	10.7	28.6	6.0	4.3	20.0	6.1
50%	6.2	32.1	7.6	12.5	38.8	7.8	5.4	27.5	7.8
100%	7.9	47.1	9.3	13.5	43.5	8.5	5.8	30.1	8.5

Benefits of pretraining on untrimmed videos

Unlike standard video captioning pretrained models, Vid2Seq is pretrained on *untrimmed* narrated videos (where speech sentences are split by the time tokens).

Pretraini	Y	′ouCook2	2	ActivityNet Captions			
Untrimmed	Time tokens	SODA	CIDEr	F1	SODA	CIDEr	F1
×	X	4.0	18.0	18.1	5.4	18.8	49.2
1	×	5.5	27.8	20.5	5.5	26.5	52.1
1	1	7.9	47.1	27.3	5.8	30.1	52.4

Effect of pretraining losses and modalities

The visual inputs only model benefits from the generative objective. The denoising objective helps the model with visual+speech inputs.

Finetuning Input		Pretrainin	YouCook2			ActivityNet Captions				
Visual	Speech	Generative	Denoising	SODA	CIDEr	F1	SODA	CIDEr	F1	
1	×	No pret	raining	3.0	15.6	15.4	5.4	14.2	46.5]
1	1	No pret	raining	4.0	18.0	18.1	5.4	18.8	49.2	
1	×	1	×	5.7	25.3	23.5	5.9	30.2	51.8]
1	1	✓ ×		2.5	10.3	15.9	4.8	17.0	48.8	
1	1	✓ ✓		7.9	47.1	27.3	5.8	30.1	52.4	•

Captioning helps localization after pretraining.

Contextualizing the noisy speech boundaries with their semantic content is important.

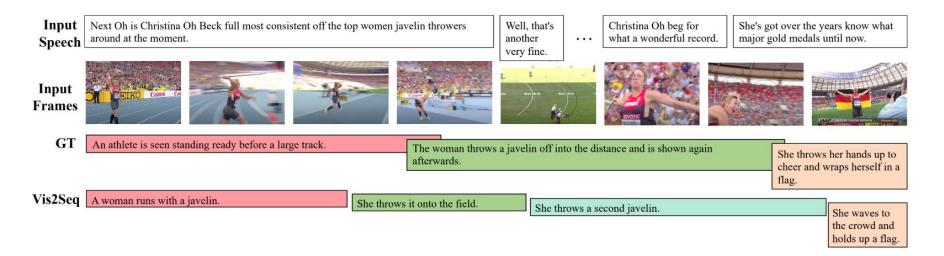
Captioning	Pretraining	YouCook2			ActivityNet Captions			
		Recall	Precis	F1	Recall	Precis.	F1	
×	X	17.8	19.4	17.7	47.3	57.9	52.0	
1	X	17.2	20.6	18.1	42.5	64.1	49.2	
×	1	25.7	21.4	22.8	52.5	53.0	51.1	
1	1	27.9	27.8	27.3	52.7	53.9	52.4	

Data and model scaling.

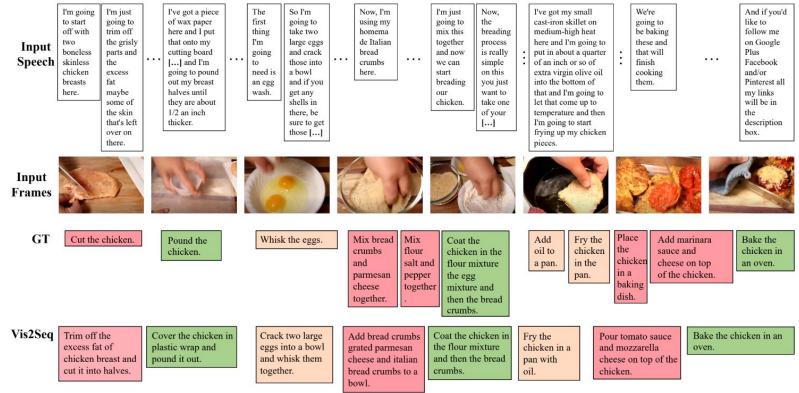
Language Model	Pretrai	Pretraining			2	ActivityNet Captions			
	# Videos	Dataset	SOD A	CID Er	F1	SOD A	CIDEr	F1	
T5-Small	15M	YTT	6.1	31.1	24.3	5.5	26.5	52.2	
T5-Base	0	-	4.0	18.0	18.1	5.4	18.8	49.2]
T5-Base	15K	YTT	6.3	35.0	24.4	5.1	24.4	49.9	
T5-Base	150K	YTT	7.3	40.1	26.7	5.4	27.2	51.3]
T5-Base	1M5	YTT	7.8	45.5	26.8	5.6	28.7	52.2	
T5-Base	1M	HTM	8.3	48.3	26.6	5.8	28.8	53.1]
T5-Base	15M	YTT	7.9	47.1	27.3	5.8	30.1	52.4]

Qualitative results

More examples: <u>https://www.youtube.com/watch?v=3oEHSU5ExsI</u>



Qualitative results



Qualitative results

Conclusion

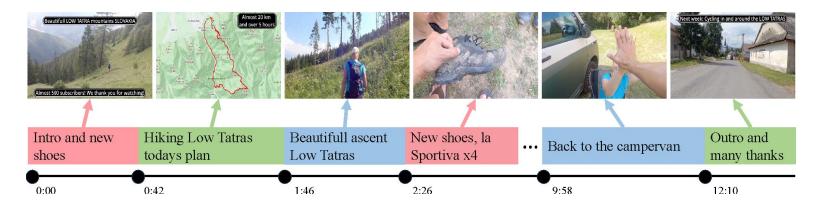
- Vid2Seq is a visual language model for dense video captioning.
- Vid2Seq can be effectively pretrained on unlabeled narrated videos at scale.
- The pretrained Vid2Seq model improves the SoTA on 3 dense video captioning datasets, 2 video paragraph captioning datasets, 2 video clip captioning datasets, and generalizes well to few-shot setting.

Limitations

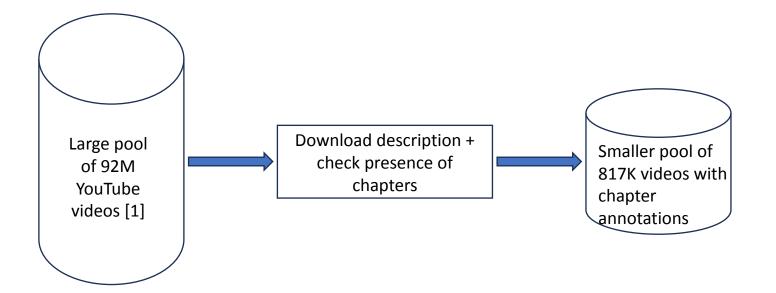
- Vid2Seq cannot use raw audio inputs (beyond speech transcripts).
- Does Vid2Seq generalize to other tasks, e.g. VideoQA or temporal action localization?
- Pretraining gains are subject to video domain -> Vid2Seq event localization performance is below task-specific approaches on ActivityNet Captions.

Video Chapter Generation

- **Goal:** improve navigation in long videos.
- **Task:** segment a long video into segments and generate a chapter title for each.



Data collection procedure



[1] MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound, R. Zellers et al, CVPR 2022.

Data statistics

- 817K videos & 7M chapters
- 8 chapters per video (avg)
- Chapter duration (avg): 142s

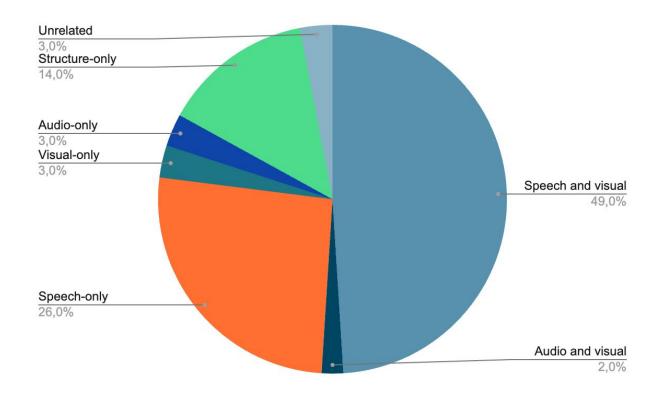
- Video duration (avg): 1354s
- 97% videos with ASR
- •93% videos in English



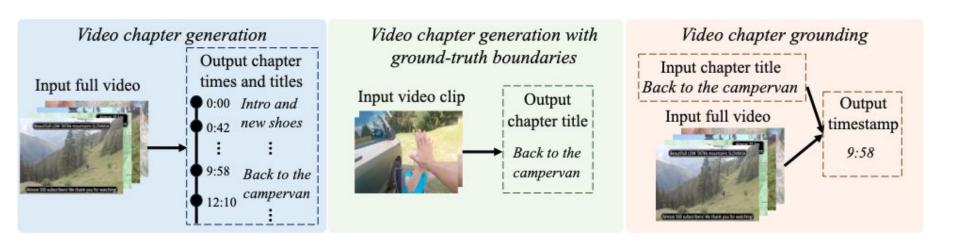
Comparison with other datasets

Dataset	# Videos	Duration (min)	# Descriptions	Annotations
HowTo100M	1M	7	136M	ASR
YT-Temporal-1B	19M	6	900M	ASR
HD-VILA-100M	3M	7	103M	ASR
ActivityNet Captions	20K	3	100K	Dense captions
YouCook2	2K	6	15K	Dense captions
ViTT	8K	4	56K	Dense captions
Ego4D	10K	23	4M	Dense captions
VidChapters-7M	817K	23	7M	ASR+Chapters

Manual assessment



New benchmarks



Video chapter generation

Model	Modalit ies	PT Data	FT VC	SODA	CIDEr	METEOR	R@3s	P@3s	R@0.7	P@0.7
Text tiling + LLaMA	Т	Text mix	No	0.2	0.5	0.3	5.8	7.9	8.9	8.8
Shot detect + BLIP-2	V	129M img-txt	No	0.6	0.2	0.6	27.4	29.7	12.5	8.7
PDVC	V	None	Yes	6.8	35.8	9.4	17.8	40.2	22.5	26.9
Vid2Seq	Т	C4+HTM	Yes	10.5	50.7	8.7	28.9	23.3	27.2	24.8
Vid2Seq	V+T	C4	Yes	10.6	51.3	8.8	28.6	23.8	26.9	24.9
Vid2Seq	V+T	C4+HTM	Yes	11.4	55.7	9.5	28.5	24.0	28.5	26.4

Video chapter generation given ground-truth boundaries

Model	Modali ties	PT Data	FT VC	CIDEr	METEOR
LLaMA	Т	Text mix	No	0.0	0.1
BLIP-2	V	129M img-txt	No	12.4	2.2
Vid2Seq	V	C4+HTM	Yes	47.1	5.1
Vid2Seq	Т	C4+HTM	Yes	105.3	11.5
Vid2Seq	V+T	C4	Yes	110.8	11.5
Vid2Seq	V+T	C4+HTM	Yes	120.5	12.6

Video chapter grounding

Model	Modali ties	PT Data	FT VC	R@3s	R@0.7
BERT	Т	Text mix	No	5.2	0.1
CLIP	V	400M img-txt	No	3.7	2.3
Moment-DETR	V	None	Yes	12.4	17.6

Transfer to dense video captioning

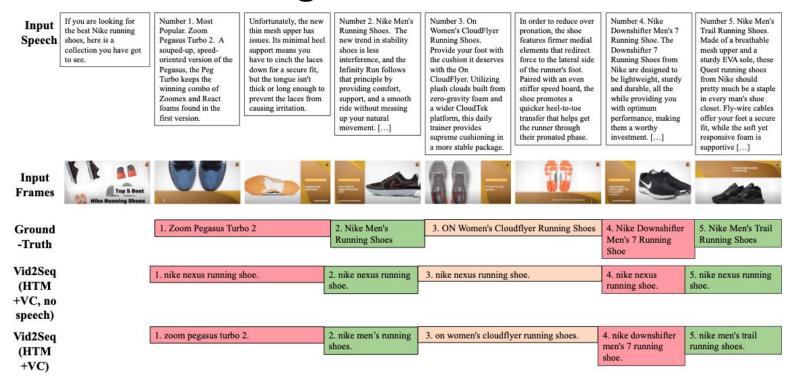
Model	Modali	PT Data	YouCook2			ViTT		
	ties		SODA	CIDEr	METEOR	SODA	CIDEr	METEOR
SoTA	T+V	C4+YTT	7.9	47.1	9.3	13.5	43.5	8.5
PDVC	V	None	4.8	28.8	5.8	9.4	40.6	16.5
PDVC	V	VidChap	5.9	34.7	7.5	10.1	41.5	16.1
Vid2Seq	T+V	C4+HTM	8.6	53.2	10.5	14.1	44.8	8.7
Vid2Seq	T+V	C4+HTM+ 10% VidChap	9.9	63.9	12.1	14.5	47.4	9.2
Vid2Seq	T+V	C4+HTM+ VidChap	10.3	67.2	12.3	15.0	50.0	9.5

Zero-shot dense video captioning

Model	Modali ties	PT Data	YouCook2			ViTT		
			SODA	CIDEr	METEOR	SODA	CIDEr	METEOR
Text tiling + LLaMA	Т	None	0.2	0.6	0.2	0.2	0.6	0.5
Shot Detect + BLIP-2	V	VidChap	0.6	1.0	0.5	0.2	0.1	0.2
Vid2Seq	T+V	C4+HTM	0.0	0.1	0.0	0.0	0.0	0.0
Vid2Seq	T+V	C4+HTM+ 10% VidChap	3.2	11.5	3.0	6.4	21.6	5.3
Vid2Seq	T+V	C4+HTM+ VidChap	3.9	13.3	3.4	9.0	28.0	6.5

Qualitative examples of video chapter generation

Qualitative examples of video chapter generation



Conclusion

- We present VidChapters-7M, a large-scale dataset of user-annotated chapters.
- We benchmark baselines and SoTA video-language models on three tasks built on top of VidChapters-7M, including video chapter generation.
- Pretraining for video chapter generation transfers well to dense video captioning in both zero-shot and finetuning settings, achieving new SoTA on YouCook2 and ViTT.

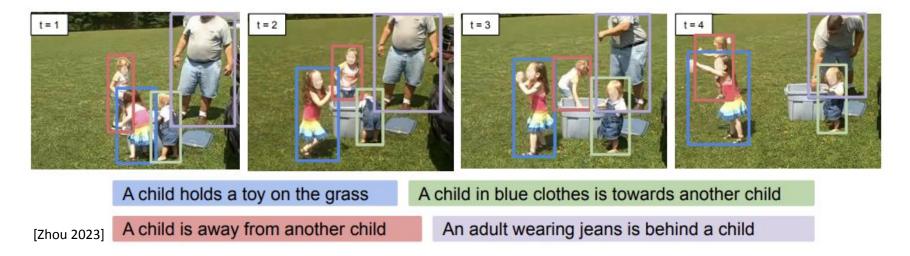
Limitations

- The distribution of VidChapters-7M is inherited from YT-Temporal-1B, which limits its diversity.
- The models evaluated in this work are not specific to chaptering tasks.
- Could this dataset be used to pretrain video-language models for other tasks than dense video captioning?

Gemini 1.5: A Visual Language Model that can understand long videos

Future work - localized dialog

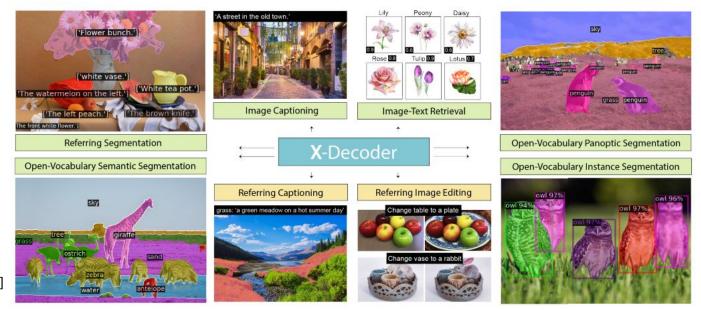
Build flexible visual language models that can dialog about untrimmed videos and also ground their generated text in space and time.



[Koh 2023] Grounding Language Models to Images for Multimodal Inputs and Outputs, Jing Yu Koh et al, ICML 2023. [Zhou 2023] Dense Video Object Captioning from Disjoint Supervision, Xingyi Zhou et al, arXiv 2023.

Future work - unified video model

Current video models are still task-specific compared to image models.

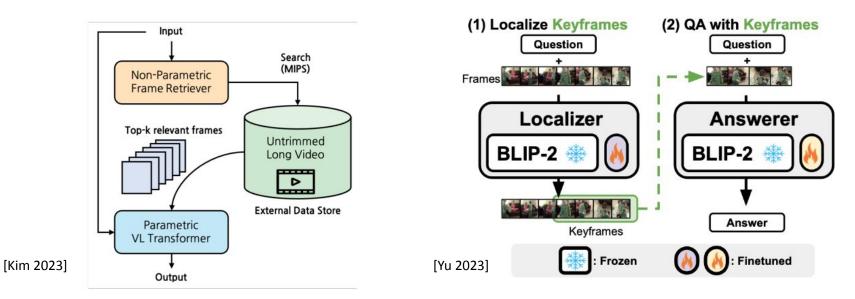


[Zou 2023]

[Zhang 2022] GLIPv2: Unifying Localization and Vision-Language Understanding, Haotian Zhang et al, NeurIPS 2022. [Zou 2023] Generalized Decoding for Pixel, Image, and Language, Xueyan Zhou et al, CVPR 2023.

Future work - processing long videos

Can we do better than the standard uniform sampling of frames?



[Kim 2023] Semi-Parametric Video-Grounded Text Generation, Sungdong Kim et al, arXiv 2023.

[Yu 2023] Self-Chained Image-Language Model for Video Localization and Question Answering, Shoubin Yu et al, arXiv 2023.

Future work - language models as annotators

Facilitate the collection of video datasets using language models.

Context type 1: Captions

A group of people standing outside of a black vehicle with various luggage. Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUV.

The sport utility vehicle is parked in the public garage, being packed for a trip Some people with luggage near a van that is transporting it.

Context type 2: Boxes

person: [0.681, 0.242, 0.774, 0.694], person: [0.63, 0.222, 0.686, 0.516], person: [0.444, 0.233, 0.487, 0.34], backpack: [0.384, 0.696, 0.485, 0.914], backpack: [0.755, 0.413, 0.846, 0.692], suitcase: [0.758, 0.413, 0.845, 0.69], suitcase: [0.1, 0.497, 0.173, 0.579], bicycle: [0.282, 0.363, 0.327, 0.442], car: [0.786, 0.25, 0.848, 0.322], car: [0.783, 0.27, 0.827, 0.335], car: [0.86, 0.254, 0.891, 0.3], car: [0.261, 0.101, 0.787, 0.626]

Response type 1: conversation

Question: What type of vehicle is featured in the image? Answer: The image features a black sport utility vehicle (SUV). Question: Where is the vehicle parked? Answer: The vehicle is parked in an underground parking area, likely in a public garage. Question: What are the people in the image doing?

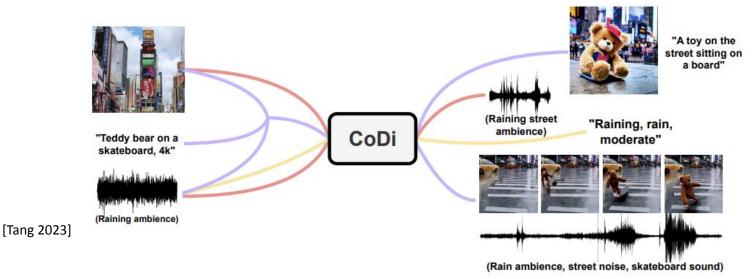
[Liu 2023] Answer: The people are trying to fit all of their luggage into the SUV, likely preparing for a trip.

[Liu 2023] Visual instruction tuning, Haotian Liu et al, arXiv 2023.

[Zhang 2023] Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding, Hang Zhang et al, arXiv 2023.

Future work - multi-modality

Build models that can understand more modalities (audio), generate more as well (visual, audio), and learn modalities from one another.



[Girdhar 2023] IMAGEBIND: One Embedding Space To Bind Them All, Rohit Girdhar et al, CVPR 2023. [Tang 2023] Any-to-Any Generation via Composable Diffusion, Zineng Tang et al, arXiv 2023.