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Visual language models

• Language is a fundamental aspect of human communication
• Vision is a fundamental aspect of human perception

-> Developing machines that can process both is crucial e.g. for 
human-computer interaction, search, customer support, accessibility…
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Example of a visually-aware chatbot 

https://docs.google.com/file/d/14WAtLKYkei9YunmQc9K9nVDFdes9v7zu/preview


What are they doing? -> Martial arts
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How many men are there? -> 2
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What does a machine need to do that?

• Question-answering ability

• Vision-language understanding
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Why does the kid trust the man?
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Scene understanding is not enough!

Caption: two 
people in a garden 
doing martial arts.
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Because the man saved his life!
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What else do we need?

• Localizing events in time

• Multi-event reasoning

…
…

…
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Applications: Beyond answering questions

• Video-to-text summarization

• Improved navigation with automatically generated video chapters

This video is about a kid that learns kung fu. First the kid is 
attacked by 6 aggressors. A man appears and defeat them, 
thereby saving the kid’s life. The kid then starts training with the 
man and becomes stronger day after day. He ends up winning a 
prestigious competition against his toughest aggressors.
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Dense Video Captioning

•Task: generate temporally localized 
captions for all events in an untrimmed 
minutes-long video.

•Prior approaches (e.g. [Wang 2021]): 
are task specific and trained only on 
manually annotated datasets.

Example from the ActivityNet-Captions dataset [Krishna 
2017].

[Krishna 2017] Dense-Captioning Events in Videos, Ranjay Krishna et al, ICCV 2017.
[Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021.
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Localization as language modeling
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• Pix2seq [Chen 2022] casts object detection as sequence generation.

• Spatial coordinates are quantized and tokenized.

[Chen 2022] Pix2seq: A Language Modeling Framework for Object Detection, Ting Chen et al, ICLR 2022.
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The Vid2Seq model
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• Formulates dense video captioning 
as a sequence-to-sequence problem.

• Time is quantized and jointly 
tokenized with the text.

•Model architecture: visual encoder, 
text encoder and text decoder.
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Pretraining Vid2Seq on untrimmed narrated videos
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• Speech is also cast as a single sequence of text and time tokens.

•Generative objective: given visual inputs, predict speech.

•Denoising objective: given visual inputs and noisy speech, predict 
masked speech tokens.
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Vid2Seq is SoTA on video captioning tasks.
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[Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021.
[Zhu 2022] End-to-end Dense Video Captioning as Sequence Generation, Wanrong Zhu et al, COLING 2022.
[Lei 2020] MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning, Jie Lei et al, ACL 2020.
[Seo 2022] End-to-end Generative Pretraining for Multimodal Video Captioning, Paul Hongsuck Seo et al, CVPR 2022.
[Lin 2022] SwinBERT: End-to-End Transformers with Sparse Attention for Video Captioning, Kevin Lin et al, CVPR 2022.
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Vid2Seq has competitive event localization 
performance without task-specific design.

Model YouCook2 ViTT ActivityNet Captions

Recall Precision Recall Precision Recall Precision

SoTA 20.7 20.6 32.2 32.1 59.0 60.3

Vid2Seq 27.9 27.8 42.6 46.2 52.7 53.9

[Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021.
[Zhu 2022] End-to-end Dense Video Captioning as Sequence Generation, Wanrong Zhu et al, COLING 2022.
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Vid2Seq generalizes well 
to few-shot settings.

Data YouCook2 ViTT ActivityNet Captions

SODA CIDEr METEOR SODA CIDEr METEOR SODA CIDEr METEOR

1% 2.4 10.1 3.3 2.0 7.4 1.9 2.2 6.2 3.2

10% 3.8 18.4 5.2 10.7 28.6 6.0 4.3 20.0 6.1

50% 6.2 32.1 7.6 12.5 38.8 7.8 5.4 27.5 7.8

100% 7.9 47.1 9.3 13.5 43.5 8.5 5.8 30.1 8.5

We also find that pretraining is crucial for few-shot generalization.

19



Benefits of pretraining 
on untrimmed videos

Pretraining input YouCook2 ActivityNet Captions

Untrimmed Time 
tokens

SODA CIDEr F1 SODA CIDEr F1

✗ ✗ 4.0 18.0 18.1 5.4 18.8 49.2

✓ ✗ 5.5 27.8 20.5 5.5 26.5 52.1

✓ ✓ 7.9 47.1 27.3 5.8 30.1 52.4

Unlike standard video captioning pretrained models, Vid2Seq is 
pretrained on untrimmed narrated videos (where speech sentences are 
split by the time tokens).
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Effect of pretraining losses and modalities

Finetuning Input Pretraining losses YouCook2 ActivityNet Captions

Visual Speech Generative Denoising SODA CIDEr F1 SODA CIDEr F1

✓ ✗ No pretraining 3.0 15.6 15.4 5.4 14.2 46.5

✓ ✓ No pretraining 4.0 18.0 18.1 5.4 18.8 49.2

✓ ✗ ✓ ✗ 5.7 25.3 23.5 5.9 30.2 51.8

✓ ✓ ✓ ✗ 2.5 10.3 15.9 4.8 17.0 48.8

✓ ✓ ✓ ✓ 7.9 47.1 27.3 5.8 30.1 52.4

The visual inputs only model benefits from the generative objective.

The denoising objective helps the model with visual+speech inputs.
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Captioning helps localization after pretraining.

Captioning Pretraining YouCook2 ActivityNet Captions

Recall Precis F1 Recall Precis. F1

✗ ✗ 17.8 19.4 17.7 47.3 57.9 52.0

✓ ✗ 17.2 20.6 18.1 42.5 64.1 49.2

✗ ✓ 25.7 21.4 22.8 52.5 53.0 51.1

✓ ✓ 27.9 27.8 27.3 52.7 53.9 52.4

Contextualizing the noisy speech boundaries with their semantic 
content is important.
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Data and model scaling.

Language Model Pretraining YouCook2 ActivityNet Captions
# Videos Dataset SOD

A
CID
Er

F1 SOD
A

CIDEr F1

T5-Small 15M YTT 6.1 31.1 24.3 5.5 26.5 52.2

T5-Base 0 - 4.0 18.0 18.1 5.4 18.8 49.2

T5-Base 15K YTT 6.3 35.0 24.4 5.1 24.4 49.9

T5-Base 150K YTT 7.3 40.1 26.7 5.4 27.2 51.3

T5-Base 1M5 YTT 7.8 45.5 26.8 5.6 28.7 52.2

T5-Base 1M HTM 8.3 48.3 26.6 5.8 28.8 53.1
T5-Base 15M YTT 7.9 47.1 27.3 5.8 30.1 52.4
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Qualitative results
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More examples: https://www.youtube.com/watch?v=3oEHSU5ExsI 
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Qualitative results
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Qualitative results
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Conclusion

• Vid2Seq is a visual language model for dense video captioning.

• Vid2Seq can be effectively pretrained on unlabeled narrated videos at 
scale.

• The pretrained Vid2Seq model improves the SoTA on 3 dense video 
captioning datasets, 2 video paragraph captioning datasets, 2 video 
clip captioning datasets, and generalizes well to few-shot setting.
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Limitations

• Vid2Seq cannot use raw audio inputs (beyond speech transcripts).

• Does Vid2Seq generalize to other tasks, e.g. VideoQA or temporal 
action localization? 

• Pretraining gains are subject to video domain -> Vid2Seq event 
localization performance is below task-specific approaches on 
ActivityNet Captions.
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Video Chapter Generation

• Goal: improve navigation in long videos.

• Task: segment a long video into segments and generate a chapter title 
for each.



Data collection procedure

[1] MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound, R. Zellers et al, CVPR 2022.

Large pool 
of 92M 

YouTube 
videos [1]

Download description + 
check presence of 

chapters

Smaller pool of 
817K videos with 
chapter 
annotations



Data statistics

• 817K videos & 7M chapters

• 8 chapters per video (avg)

• Chapter duration (avg): 142s

• Video duration (avg): 1354s

• 97% videos with ASR

• 93% videos in English



Comparison with other datasets

Dataset # Videos Duration (min) # Descriptions Annotations

HowTo100M 1M 7 136M ASR

YT-Temporal-1B 19M 6 900M ASR

HD-VILA-100M 3M 7 103M ASR

ActivityNet 
Captions

20K 3 100K Dense captions

YouCook2 2K 6 15K Dense captions

ViTT 8K 4 56K Dense captions

Ego4D 10K 23 4M Dense captions

VidChapters-7M 817K 23 7M ASR+Chapters



Manual assessment



New benchmarks



Video chapter generation

Model Modalit
ies

PT Data FT  
VC

SODA CIDEr METEOR R@3s P@3s R@0.7 P@0.7

Text tiling + 
LLaMA

T Text mix No 0.2 0.5 0.3 5.8 7.9 8.9 8.8

Shot detect + 
BLIP-2

V 129M 
img-txt

No 0.6 0.2 0.6 27.4 29.7 12.5 8.7

PDVC V None Yes 6.8 35.8 9.4 17.8 40.2 22.5 26.9

Vid2Seq T C4+HTM Yes 10.5 50.7 8.7 28.9 23.3 27.2 24.8

Vid2Seq V+T C4 Yes 10.6 51.3 8.8 28.6 23.8 26.9 24.9

Vid2Seq V+T C4+HTM Yes 11.4 55.7 9.5 28.5 24.0 28.5 26.4



Video chapter generation given ground-truth 
boundaries

Model Modali
ties

PT Data FT  
VC

CIDEr METEOR

LLaMA T Text mix No 0.0 0.1

BLIP-2 V 129M 
img-txt

No 12.4 2.2

Vid2Seq V C4+HTM Yes 47.1 5.1

Vid2Seq T C4+HTM Yes 105.3 11.5

Vid2Seq V+T C4 Yes 110.8 11.5

Vid2Seq V+T C4+HTM Yes 120.5 12.6



Video chapter grounding

Model Modali
ties

PT Data FT VC R@3s R@0.7

BERT T Text mix No 5.2 0.1

CLIP V 400M img-txt No 3.7 2.3

Moment-DETR V None Yes 12.4 17.6



Transfer to dense video captioning

Model Modali
ties

PT Data YouCook2 ViTT

SODA CIDEr METEOR SODA CIDEr METEOR

SoTA T+V C4+YTT 7.9 47.1 9.3 13.5 43.5 8.5

PDVC V None 4.8 28.8 5.8 9.4 40.6 16.5

PDVC V VidChap 5.9 34.7 7.5 10.1 41.5 16.1

Vid2Seq T+V C4+HTM 8.6 53.2 10.5 14.1 44.8 8.7

Vid2Seq T+V C4+HTM+
10% 

VidChap

9.9 63.9 12.1 14.5 47.4 9.2

Vid2Seq T+V C4+HTM+
VidChap

10.3 67.2 12.3 15.0 50.0 9.5



Zero-shot dense video captioning
Model Modali

ties
PT Data YouCook2 ViTT

SODA CIDEr METEOR SODA CIDEr METEOR

Text tiling + 
LLaMA

T None 0.2 0.6 0.2 0.2 0.6 0.5

Shot Detect 
+ BLIP-2

V VidChap 0.6 1.0 0.5 0.2 0.1 0.2

Vid2Seq T+V C4+HTM 0.0 0.1 0.0 0.0 0.0 0.0

Vid2Seq T+V C4+HTM+
10%

VidChap

3.2 11.5 3.0 6.4 21.6 5.3

Vid2Seq T+V C4+HTM+
VidChap

3.9 13.3 3.4 9.0 28.0 6.5



Qualitative examples of video chapter 
generation



Qualitative examples of video chapter 
generation



Conclusion
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• We present VidChapters-7M, a large-scale dataset of user-annotated 
chapters.

• We benchmark baselines and SoTA video-language models on three 
tasks built on top of VidChapters-7M, including video chapter 
generation.

• Pretraining for video chapter generation transfers well to dense video 
captioning in both zero-shot and finetuning settings, achieving new 
SoTA on YouCook2 and ViTT.



Limitations

• The distribution of VidChapters-7M is inherited from YT-Temporal-1B, 
which limits its diversity.

• The models evaluated in this work are not specific to chaptering tasks.

• Could this dataset be used to pretrain video-language models for other 
tasks than dense video captioning?
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Gemini 1.5: A Visual Language Model that 
can understand long videos

http://www.youtube.com/watch?v=wa0MT8OwHuk


Future work - localized dialog

Build flexible visual language models that can dialog about untrimmed 
videos and also ground their generated text in space and time. 

[Koh 2023] Grounding Language Models to Images for Multimodal Inputs and Outputs, Jing Yu Koh et al, ICML 2023.
[Zhou 2023] Dense Video Object Captioning from Disjoint Supervision, Xingyi Zhou et al, arXiv 2023.

[Zhou 2023]



Future work - unified video model

[Zhang 2022] GLIPv2: Unifying Localization and Vision-Language Understanding, Haotian Zhang et al, NeurIPS 2022.
[Zou 2023] Generalized Decoding for Pixel, Image, and Language, Xueyan Zhou et al, CVPR 2023.

Current video models are still task-specific compared to image models.

[Zou 2023]



Future work - processing long videos

Can we do better than the standard uniform sampling of frames?

[Kim 2023] Semi-Parametric Video-Grounded Text Generation, Sungdong Kim et al, arXiv 2023.
[Yu 2023] Self-Chained Image-Language Model for Video Localization and Question Answering, Shoubin Yu et al, arXiv 2023.

[Kim 2023] [Yu 2023]



Future work - language models as annotators

Facilitate the collection of video datasets using language models.

[Liu 2023] Visual instruction tuning, Haotian Liu et al, arXiv 2023.
[Zhang 2023] Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding, Hang Zhang et al, arXiv 2023.

[Liu 2023]



Future work - multi-modality

Build models that can understand more modalities (audio), generate 
more as well (visual, audio), and learn modalities from one another.

[Girdhar 2023] IMAGEBIND: One Embedding Space To Bind Them All, Rohit Girdhar et al, CVPR 2023.
[Tang 2023] Any-to-Any Generation via Composable Diffusion, Zineng Tang et al, arXiv 2023.
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[Tang 2023]


