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Vid2Seq overview

• Vid2Seq is a visual language model for dense video captioning.
• Vid2Seq is pretrained on millions of unlabeled narrated videos.
• Vid2Seq achieves SoTA on various captioning tasks.
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Dense Video Captioning

• Task: generate temporally localized
captions for all events in an untrimmed
minutes-long video.
• Prior approaches (e.g. [Wang 2021]): 

are task specific and trained only on 
manually annotated datasets.

Example from the ActivityNet-Captions dataset [Krishna 2017].

[Krishna 2017] Dense-Captioning Events in Videos, Ranjay Krishna et al, ICCV 2017.
[Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021.

3



Localization as 
language modeling
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• Pix2seq [Chen 2022] casts object detection as sequence generation.
• Spatial coordinates are quantized and tokenized.

[Chen 2022] Pix2seq: A Language Modeling Framework for Object Detection, Ting Chen et al, ICLR 2022.



The Vid2Seq model
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• Formulates dense video captioning
as a sequence-to-sequence problem.
• Time is quantized and jointly

tokenized with the text.
• Model architecture: visual encoder, 

text encoder and text decoder.



Pretraining Vid2Seq on 
untrimmed narrated videos
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• Speech is also cast as a single sequence of text and time tokens.
• Generative objective: given visual inputs, predict speech.
• Denoising objective: given visual inputs and noisy speech, predict

masked tokens.



Vid2Seq improves the SoTA
on video captioning tasks.
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[Wang 2021] End-to-End Dense Video Captioning with Parallel Decoding, Teng Wang et al, ICCV 2021.
[Zhu 2022] End-to-end Dense Video Captioning as Sequence Generation, Wanrong Zhu et al, COLING 2022.
[Lei 2020] MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning, Jie Lei et al, ACL 2020.
[Seo 2022] End-to-end Generative Pretraining for Multimodal Video Captioning, Paul Hongsuck Seo et al, CVPR 2022.
[Lin 2022] SwinBERT: End-to-End Transformers with Sparse Attention for Video Captioning, Kevin Lin et al, CVPR 2022.



Vid2Seq generalizes well
to few-shot settings.
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Data YouCook2 ViTT ActivityNet Captions

SODA CIDEr METEOR SODA CIDEr METEOR SODA CIDEr METEOR

1% 2.4 10.1 3.3 2.0 7.4 1.9 2.2 6.2 3.2

10% 3.8 18.4 5.2 10.7 28.6 6.0 4.3 20.0 6.1

50% 6.2 32.1 7.6 12.5 38.8 7.8 5.4 27.5 7.8

100% 7.9 47.1 9.3 13.5 43.5 8.5 5.8 30.1 8.5

We also find that pretraining is crucial for few-shot generalization.



Benefits of pretraining 
on untrimmed videos
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Pretraining input YouCook2 ActivityNet Captions

Untrimmed Time tokens SODA CIDEr F1 SODA CIDEr F1

✗ ✗ 4.0 18.0 18.1 5.4 18.8 49.2

✓ ✗ 5.5 27.8 20.5 5.5 26.5 52.1

✓ ✓ 7.9 47.1 27.3 5.8 30.1 52.4

Unlike standard video captioning pretrained models, Vid2Seq is
pretrained on untrimmed narrated videos (where speech sentences are 
split by the time tokens).



Effect of pretraining losses 
and modalities
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Finetuning Input Pretraining losses YouCook2 ActivityNet Captions

Visual Speech Generative Denoising SODA CIDEr F1 SODA CIDEr F1

✓ ✗ No pretraining 3.0 15.6 15.4 5.4 14.2 46.5

✓ ✓ No pretraining 4.0 18.0 18.1 5.4 18.8 49.2

✓ ✗ ✓ ✗ 5.7 25.3 23.5 5.9 30.2 51.8

✓ ✓ ✓ ✗ 2.5 10.3 15.9 4.8 17.0 48.8

✓ ✓ ✓ ✓ 7.9 47.1 27.3 5.8 30.1 52.4

The visual inputs only model benefits from the generative objective.
The denoising objective helps the model with visual+speech inputs.



Captioning helps 
localization after pretraining.
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Captioning Pretraining YouCook2 ActivityNet Captions

Recall Precis. F1 Recall Precis. F1

✗ ✗ 17.8 19.4 17.7 47.3 57.9 52.0

✓ ✗ 17.2 20.6 18.1 42.5 64.1 49.2

✗ ✓ 25.7 21.4 22.8 52.5 53.0 51.1

✓ ✓ 27.9 27.8 27.3 52.7 53.9 52.4

Contextualizing the noisy speech boundaries with their semantic
content is important.



Data and model scaling.
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Language Model Pretraining YouCook2 ActivityNet Captions

# Videos Dataset SODA CIDEr F1 SODA CIDEr F1

T5-Small 15M YTT 6.1 31.1 24.3 5.5 26.5 52.2

T5-Base 0 - 4.0 18.0 18.1 5.4 18.8 49.2

T5-Base 15K YTT 6.3 35.0 24.4 5.1 24.4 49.9

T5-Base 150K YTT 7.3 40.1 26.7 5.4 27.2 51.3

T5-Base 1M5 YTT 7.8 45.5 26.8 5.6 28.7 52.2

T5-Base 1M HTM 8.3 48.3 26.6 5.8 28.8 53.1

T5-Base 15M YTT 7.9 47.1 27.3 5.8 30.1 52.4



Qualitative results
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Qualitative results
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More examples at: https://www.youtube.com/watch?v=3oEHSU5ExsI

https://www.youtube.com/watch?v=3oEHSU5ExsI


Conclusion

• Vid2Seq is a visual language model for dense video captioning.
• Vid2Seq can be effectively pretrained on unlabeled narrated videos at 

scale.
• The pretrained Vid2Seq model improves the SoTA on 3 dense video

captioning datasets, 2 video paragraph captioning datasets, 2 video
clip captioning datasets, and generalizes well to few-shot setting.
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