NAS evaluation is frustratingly hard

Antoine Yang, Pedro M. Esperança, Fabio M. Carlucci Huawei Noah's Ark Lab, London, UK ICLR2020 Poster Session

Paper: https://arxiv.org/abs/1912.12522

Code: https://github.com/antoyang/NAS-Benchmark

Background

Neural Architecture Search (NAS):

Automated design of a neural architecture for a given task

• 3 main components:

- A search space: set of architectures that can be found
- A search strategy: Random Search, Evolution, RL, Bayesian, Gradient-based ...
- A training protocol: way we evaluate architectures
- Issues related to the evaluation of search strategies:
- Nowadays, most NAS methods fail to compare against an adequate baseline
- Unclarity about the contribution of each component to the final result

Our main contributions:

- A benchmark of 8 NAS methods on 5 datasets with Random Sampling Baseline
- A study of the contribution of each component

NAS Benchmark

- Method selection:
 8 fast open-source NAS methods
- Random Sampling Baseline:
 Randomly sample architectures
 from the method's search space
 (no search) and train them with
 the method's training protocol
- Consistency, Generalization:
- Average results over 8 runs
- Use a variety of 5 CV datasets
- Results:
- The NAS methods barely beat this trivial baseline
- Substantial differences between the different random samplings

Comparison of training protocols

Goal:

Evaluate the importance of the different components in the final test accuracy

Methodology:

Train the same 8 randomly sampled architectures from DARTS search space with diverse protocols and report averaged results on CIFAR10

Results:

- Significant differences between the different protocols: 3% gap between the worst and the best
- The best out of 8 random architectures with best protocol achieves 98.15% test accuracy (0.25% below state-of-the-art*)

^{*}XNAS: Neural Architecture Search with Expert Advice, Niv Nayman et al, 2019

Study of DARTS' search space

Random Sampling Distribution:

- Randomly sample 214 architectures in DARTS' search space and train them with DARTS' protocol
- Narrow accuracy range: average 97.03 ± 0.23, min 96.18, max 97.56

• Importance of the Micro-Structure:

Similar study and observations with 56 architectures sampled from a modified search space based on (inefficient) vanilla convolutions

• Importance of the Training Seed:

- Randomly sample 32 architectures and train them with 2 different seeds
- Architectures' ranking heavily changes: Kendall Tau 0.48

Importance of the Depth Gap:

Similar study and observations with 32 architectures and 2 different number of cells: Kendall Tau 0.54

Discussion and Best Practices

Comparing with baselines:

- Either report a result with same training protocol / search space than previous works (e.g. NAS-Bench-101*)
- Either update the results of previous works with your new training protocol / search space
- Random Sampling is a simple, search-free and powerful baseline

Search Space Design:

If the goal of AutoML / NAS is to find the optimal architecture without human intervention, a wider search space (with a less constrained macro-structure) is a more interesting challenge than a narrow one.

Generability:

Evaluating on datasets with various sizes, image sizes, class granularity and learning task could avoid overfitting and highlight a costly hyperparameter tuning. This cost should be reported, if parameters have to be further tuned for other datasets / tasks.

Reproducibility:

Importance of providing all hyperparameters (including the seed) and open-sourcing the code

*NAS-Bench-101: Towards Reproducible Neural Architecture Search, Chris Ying et al., 2019

ICLR webpage thumbnail

Comparison of different training protocols