

Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid

Project page: https://antoyang.github.io/just-ask.html

Paper: https://arxiv.org/abs/2012.00451

Video Question Answering (VideoQA)

VideoQA is a promising task to evaluate the ability to understand visual data.

Question: What fruit is shown at the end? Answer: watermelon

Question: What is the largest object at the right of the man? **Answer:** wheelbarrow

Source of the examples: iVQA dataset, see Slide 10

Challenges in VideoQA

- Large diversity of questions and videos
- Manual annotation for VideoQA is expensive
- **Problematic:** How to tackle VideoQA with the least amount of manual supervision possible?

Just Ask idea

- Automatically generate VideoQA training data from narrated videos.
- Rely on text-only annotations and cross-modal supervision.

Speech: The sound is amazing on this piano.

Weak supervision in narrated videos

- Narrated videos are easy to obtain at scale.
- Assumption: weak correlation between the visual content and the speech [Miech 2019]

[Miech 2019] HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, Miech et al, ICCV 2019.

Text-only supervision

We use language models trained on a text-only question-answering corpus [Raffel 2020, Suraj 2020, Rajpurkar 2016].

[Raffel 2020] Exploring the limits of transfer learning with a unified text-to-text transformer, Raffel et al, JMLR 2020. [Suraj 2020] Question Generation, Suraj, GitHub repository 2020.

[Rajpurkar 2016] SQuAD: 100,000+ questions for machine comprehension of text, Rajpurkar et al, arXiv 2016.

Generating VideoQA data

Sentence-aligned video v

[Tilk 2016] Bidirectional recurrent neural network with attention mechanism for punctuation restoration, Tilk et al, Interspeech 2016.

Generating VideoQA data

Sentence-aligned video v

[Tilk 2016] Bidirectional recurrent neural network with attention mechanism for punctuation restoration, Tilk et al, Interspeech 2016.

HowToVQA69M: a large-scale VideoQA dataset

- Generated by applying our pipeline to HowTo100M [Miech 2019]
- 69M video-question-answer triplets

Noise in HowToVQA69M

Speech: So you bring it to a point and we'll, just cut it off at the bottom.
Generated question: What do we do at the bottom?
Generated answer: cut it off

Speech: Do it on the other side, and you've peeled your orange.Generated question: What color did you peel on the other side?Generated answer: orange

Speech: You can't miss this... Generated question: What can't you do? Generated answer: miss

QA Generation error

QA unrelated to video

≈ 30%

≈ 31%

≈ 39%

VideoQA model and training procedure

iVQA: a new VideoQA benchmark

- 10K videos from HowTo100M
- Manually collected
- 10K open-ended questions
- 5 correct answers per question
- Exclusion of non-visual questions to reduce language bias

Question: What shape is the handcraft item in the end?

Zero-shot VideoQA: quantitative results

Task definition: no manual supervision of visual data

Our model (iii) outperforms:

- Its language-only variant (i) -> importance of multi-modality in HowToVQA69M
- Its variant trained on HowTo100M (ii) -> benefit of HowToVQA69M to train VideoQA models

Quantitative results on 5 VideoQA datasets:

	Method	Pretraining Data	iVQA	MSRVTT-QA	MSVD-QA	ActivityNet-QA	How2QA
	Random	Ø	0.09	0.02	0.05	0.05	25.0
(i)	QA-T	HowToVQA69M	4.4	2.5	4.8	11.6	38.4
(ii)	VQA-T	HowTo100M	1.9	0.3	1.4	0.3	46.2
(iii)	VQA-T	HowToVQA69M	12.2	2.9	7.5	12.2	51.1

Zero-shot VideoQA: qualitative results

Question: What is the man cutting? GT answer: pipe QA-T (HowToVQA69M): onion VQA-T (HowTo100M): knife holder Ours: pipe

Question: What is the largest object at the right of the man? GT answer: wheelbarrow QA-T (HowToVQA69M): statue VQA-T (HowTo100M): trowel Ours: wheelbarrow

Question: What fruit is shown in the end? GT answer: watermelon QA-T (HowToVQA69M): pineapple VQA-T (HowTo100M): slotted spoon Ours: watermelon

Online Demo http://videoqa.paris.inria.fr/

Just Ask VideoQA Demo

Choose a video for which you want to ask a question

Default question, start and end timestamps are from the iVQA test set annotations. Nothing is pre-computed for these videos.

CUTTING ALL MY HAIR OFF WITH KITCHEN SCISSORS | Vlogmas Day 4

Pizza, Pasta, Passion: Strawberry Shortcake

on the Pottery Wheel

Tea time with English Ivy (Battles Fixing against Invasive Species)

Fixing Door hinges when Hinge holes OneLi are ruined and to big

OneLIFE: Decontamination of surgical instruments

Using Paper Filters - Ninja Coffee Bar

FILTERS

Video Question Answering on iVQA

Question input : What was behind the guy using the spinning wheel?

Top 5 answers (finetuned model) :

YouTube Video ID HB-vlbSt7mU

Start second 117

End second 131

Type your question below: What was behind the guy using the spinning wheel?

Choose the model below: Finetuned Czero-Shot Submit

Results after finetuning

State-of-the-art results on 4 existing VideoQA datasets

Method	Pretraining Data	iVQA	MSRVTT-QA	MSVD-QA	ActivityNet-QA	How2QA
HCRN [Le 2020]	Ø	-	35.6	36.1	_	-
SSML [Amrani 2021]	HowTo100M	-	35.1	35.1	-	-
HERO [Li 2020]	HowTo100M + TV	-	-	-	-	74.1
ClipBERT [Lei 2021]	COCO + VG	-	37.4	-	-	-
CoMVT [Seo 2021]	HowTo100M	-	39.5	42.6	38.8	82.3
Ours (Ø)	Ø	23.0	39.6	41.2	36.8	80.8
Ours (HowTo100M)	HowTo100M	28.1	40.4	43.5	38.1	81.9
Ours	HowToVQA69M	35.4	41.5	46.3	38.9	84.4

[Le 2020] Hierarchical conditional relation networks for video question answering, Le et al, CVPR 2020.
[Amrani 2021] Noise estimation using density estimation for self-supervised multimodal learning, Amrani et al, AAAI 2021.
[Li 2020] HERO: Hierarchical encoder for video+language omni-representation pre-training, Li et al, EMNLP 2020.
[Lei 2021] Less is more: Clipbert for video-and-language learning via sparse sampling, Lei et al, CVPR 2021.
[Seo 2021] Look before you speak: Visually contextualized utterances, Seo et al, CVPR 2021.

Results for rare answers

- Training on a downstream VideoQA dataset -> large improvements for most frequent answers
- Pretraining on HowToVQA69M -> significant improvements *both* for common and rare answers

Results on subsets of iVQA:

	Most f	requent a	quent answers		Least frequent answe		
Pretraining Data	Finetuning	Q1	Q2	Q3	Q4		
Ø	\checkmark	38.4	16.7	5.9	2.6		
HowTo100M	\checkmark	46.7	22.0	8.6	3.6		
HowToVQA69M	Х	9.0	8.0	9.5	7.7		
HowToVQA69M	\checkmark	47.9	28.1	15.6	8.5		

Comparison of generation methods

- [Heilman 2010] was previously used to generate VideoQA data from video descriptions [Xu 2017].
- We compare against [Heilman 2010] by applying it in our case.
- Our generation leads to better downstream VideoQA results.

		Zero-Shot			Finetuning		
Generation method	iVQA	ActivityNet-QA	How2QA	iVQA	ActivityNet-QA	How2QA	
[Heilman 2010]	7.4	1.1	41.7	31.4	38.5	83.0	
Ours	12.2	12.2	51.1	35.4	38.9	84.4	

Speech: This is classic premium chicken, grilled sandwich.
[Heilman 2010]: What is classic premium chicken, grilled sandwich? this
Ours: What type of sandwich is this? classic premium chicken, grilled sandwich

[Heilman 2010] Good question! Statistical ranking for question generation, Heilman et al, ACL 2010. [Xu 2017] Video question answering via gradually refined attention over appearance and motion, Xu et al, ACM 2017.

Ablation: pretraining losses

MLM	Sampling without answer repetition	Zei	ro-Shot	Finetuning		
		iVQA	MSVD-QA	iVQA	MSVD-QA	
Х	X	11.1	6.1	34.7	45.6	
Х	\checkmark	12.1	7.0	34.3	45.0	
\checkmark	X	10.9	6.4	34.3	45.1	
\checkmark	\checkmark	12.2	7.5	35.4	46.3	

=> Best results with MLM and our contrastive loss

Ablation: scale

Pretraining	Ze	ro-Shot	Finetuning		
data size	iVQA	MSVD-QA	iVQA	MSVD-QA	
0%	-	-	23.0	41.2	
1%	4.5	3.6	24.2	42.8	
10%	9.1	6.2	29.2	44.4	
20%	9.5	6.8	31.3	44.8	
50%	11.3	7.3	32.8	45.5	
100%	12.2	7.5	35.4	46.3	

=> Scale matters.

Conclusion

- We automatically generate a large-scale VideoQA dataset, HowToVQA69M, using text-only supervision and videos with readily-available narration.
- We manually collect iVQA, a new VideoQA benchmark with redundant annotations and reduced language bias.
- We show that our VideoQA model highly benefits from training on HowToVQA69M in a new zeroshot VideoQA setting. After finetuning, our model improves the state-of-the-art on 4 VideoQA datasets.