

Just Ask: Learning to Answer Questions from Millions of Narrated Videos

CCVOCTOBER 11-17 VIRTUAL

Antoine Yang^{1,2}, Antoine Miech^{1,2,+}, Josef Sivic³, Ivan Laptev^{1,2}, Cordelia Schmid^{1,2} ²Ecole Normale Supérieure, PSL ¹Inria Paris ³CIIRC, CTU in Prague *Now at DeepMind

Overview

Motivation

- ➤ Manual annotation for Video Question Answering is expensive
- ➤ Text-only annotations are easier to obtain

Goal

➤ Tackle Video Question Answering (VideoQA) without using any manual supervision of visual data

Idea

- ➤ Automatically generate VideoQA training data from narrated videos
- ➤ Rely on cross-modal supervision and language models trained on text-only annotations

Speech: Fold them in half again, to make a triangle.

Generated Question: How do you make a triangle?

Generated Answer: fold them in half again

HowToVQA69M: large-scale VideoQA training dataset

- ➤ Generated from HowTo100M [1]
- ➤ 69M video-question-answer triplets
- ➤ Noisy:
- ≈30% correct samples
- ≈31% question-answer generation errors
- ≈39% question-answers unrelated to video

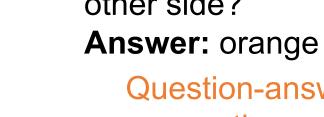
Speech: Add some of your favorite sprinkles give it a mix.

Question: What can you add to the mix? **Answer:** sprinkles

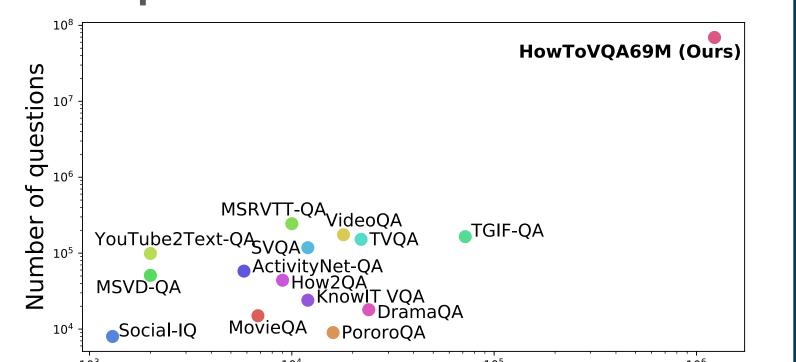
Video:

Speech: ...I'm going to show you how to unlock your ipod touch **Question:** What will I show you? **Answer:** how to unlock

your ipod touch



Comparison of VideoQA datasets



Speech: ...do it on the other side, and you've peeled your orange **Question:** What color did you peel on the other side?

Question-answer generation error

Speech: ...I've had over a hundred emails. **Question:** How many emails have I had? Answer: over a hundred

Question-answer unrelated to the video

Zero-shot VideoQA

Definition

➤ No manual supervision of visual data

results

Quantitative >Our model trained on HowToVQA69M (iii) outperforms its language-only variant (i) and its variant trained on HowTo100M [1] (ii)

Method	Pretraining data	iVQA	MSRVTT-QA	MSVD-QA	ActivityNet-QA	How2QA
Random	Ø	0.09	0.02	0.05	0.05	25.0
QA-T (i)	HowToVQA69M	4.4	2.5	4.8	11.6	38.4
/QA-T (ii)	HowTo100M	1.9	0.3	1.4	0.3	46.2
/QA-T (iii)	HowToVQA69M	12.2	2.9	7.5	12.2	51.1

Qualitative results

Question: What design are they making? GT Answer: rose (4), rose flower (1) QA-T (i): pinwheel VQA-T (ii): piping bag VQA-T (iii): rose

Question: What is in the man's hand? GT Answer: shovel (3), spade (2) QA-T (i): coin **VQA-T** (ii): planting VQA-T (iii): shovel

shown at the end? GT Answer: watermelon

QA-T (i): pineapple VQA-T (ii): slotted spoon

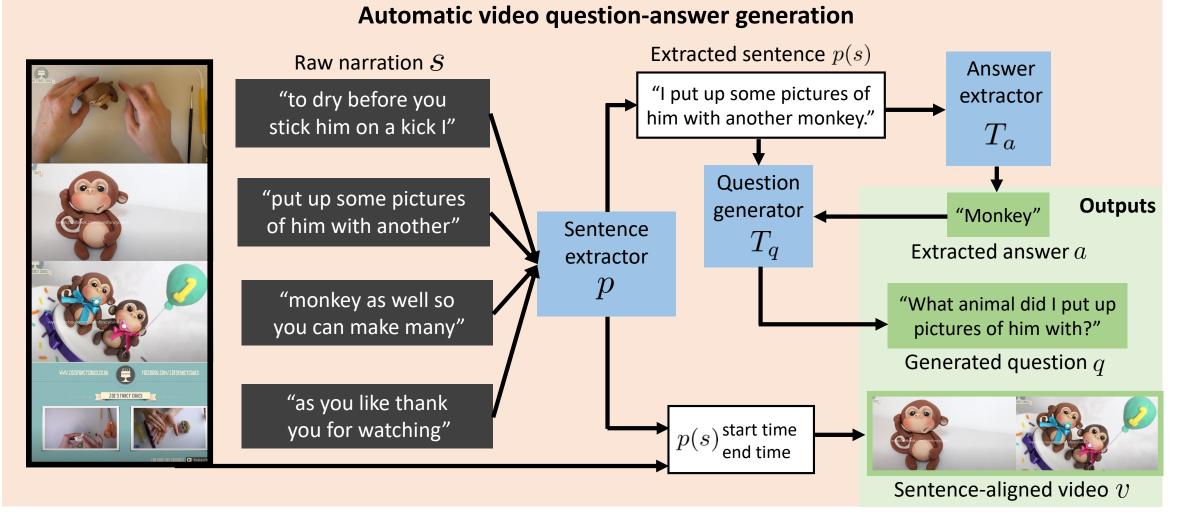
VQA-T (iii): watermelon

Results after finetuning •

- ➤ Our model pretrained on HowToVQA69M (iii) improves over its variant trained from scratch (i) and its variant pretrained on HowTo100M [1] (ii)
- ➤ State-of-the-art results on 4 existing VideoQA datasets

Method	Pretraining data	iVQA	MSRVTT-QA	MSVD-QA	ActivityNet-QA	How2QA			
HCRN [2]	Ø	-	35.6	36.1	-	-			
SSML [3]	HowTo100M	_	35.1	35.1	_	-			
ClipBERT [4]	COCO + VG	_	37.4	-	_	_			
HERO [5]	HowTo100M + TV	_	_	-	_	74.1			
CoMVT [6]	HowTo100M	-	39.5	42.6	38.8	82.3			
Ours (i)	Ø	23.0	39.6	41.2	36.8	80.8			
Ours (ii)	HowTo100M	28.1	40.4	43.5	38.1	81.9			
Ours (iii)	HowToVQA69M	35.4	41.5	46.3	38.9	84.4			

Training on HowToVQA69M I put up some pictures of



Generating VideoQA data

Assumptions

- ➤ Punctuator p is trained on a punctuated corpus
- \rightarrow Transformers T_a and T_a are trained on question-answers

Generation procedure

- . Punctuation: extract speech sentence p(s)
- 2. Video extraction: extract clip v temporally aligned with p(s)
- 3. Answer extraction: extract answer $a = T_a(p(s))$

- ➤ Temporal correspondance between video and narrations

Input: video with raw speech s Output: (v, q, a) triplet

- 4. Question generation: generate question $q = T_q(a, p(s))$

Language Modeling Loss Contrastive

Video-Question Transformer

Question: Where are the men? Answer: Track **Answer Transformer**

Training with a large-scale vocabulary of answers

- ➤ Contrastive loss between a videoquestion transformer and an answer transformer
- For each triplet (v_i, q_i, a_i) , we construct negative triplets (v_i, q_i, a_i), by sampling random answers $a_i \neq a_i$

iVQA: new dataset for VideoQA evaluation

- ➤ 10,000 videos from HowTo100M [1]
- ➤ Manually annotated
- ➤ 10,000 open-ended questions

➤ 5 correct answers per question

➤ Exclusion of non-visual questions to reduce language bias

nape is the handcraft item in the end?

shell 2 annotators 2 annotators 1 annotator

References

- [2] TM. Le, et. al., Hierarchical conditional relation networks for video question answering. In CVPR, 2020.
- [3] E. Amrani, et. al., Noise estimation using density estimation for self-supervised multimodal learning. In AAAI, 2021. [4] J. Lei, et. al., Less is more: Clipbert for video-and-language learning via sparse sampling. In CVPR, 2021
- [5] L. Li, et. al., HERO: Hierarchical encoder for video+language omni-representation pre-training. In EMNLP, 2020. [6] PH. Seo, et. al., Look before you speak: Visually contextualized utterances. In CVPR, 2021.