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Video Question Answering (VideoQA)

VideoQA is a promising proxy task to evaluate video understanding

Open-Ended Question:
Where are the men?

Answer: Track

Multiple-Choice Question:
What are the lined up men
doing?

Proposal 1: Running
Proposal 2: Talking
Proposal 3: Shaving



VideoQA Challenges

* Data variability: VideoQA requires the ability to recognize actions, objects, colors at different
spatio-temporal granularities

* Annotation: Obtaining manually annotated VideoQA data is expensive and not scalable

Question: How many Question: What does Question: What is the
times does the cat lick? the cat do 3 times? color of the bulldog?

Answer: 7 times Answer: put head down Answer: brown



Just Ask: Method overview

* We automatically generate large-scale VideoQA data from narrated videos, relying on language

models trained on text-only annotations

* We show how VideoQA models can benefit from such data, by tackling VideoQA without any
manual supervision of visual data (zero-shot) or by finetuning our pretrained model
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Weak supervision

* Narrated videos contain speech, therefore paired (video, speech) data is easy to obtain and
abundant

* The weak correlation between the visual content and speech in narrated videos helped improve
on other tasks [Miech 2019]
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Text-only supervision for automatic

generation of VideoQA data

To generate VideoQA data, we rely on language models [Raffel 2020] trained on text-only

annotations

Manually annotated
QA text corpus

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called “showers”.

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud
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[Raffel 2020] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, C. Raffel et al



Generating video-question-answer triplets
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HowToVQAG69M: a large-scale VideoQA
training dataset

We apply our generation pipeline to the videos from HowTo100M [Miech 2019] and obtain HowToVQA69M,
a large-scale and noisy VideoQA dataset

P
Input So you bring it to a point and Do it on the other side, and You can’t miss this...

\Speech: we'll, just cut it off at the bottom. you've peeled your orange. )

( i : . a
Generated Question: What do we do at the Question: What color did you Question: What can’t you do?
outputs: bottom? peel on the other side? Answer: miss

S Answer: cut it off Answer: orange )

\/ Incorrect QA Generation Weak video-speech correlation



VideoQA model (VQA-T) and training
procedure on HowToVQA69M
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IVQA: a new VideoQA evaluation benchmark

* We manually collected an open-ended VideoQA dataset based on HowTo100M narrated videos

* It contains 10K videos, each annotated with 1 question and 5 corresponding correct answers

Question: What shape is the handcraft item in the end?
shell \/ 2 annotators

Answers - spiral \/ 2 annotators

heart 1 annotator

—




Zero-shot VideoQA with no manual
supervision of visual data

We evaluate our VideoQA model VQA-T pretrained on HowToVQA69M with the following baselines:
 QA-T pretrained on HowToVQA69M: language-only variant, not using the visual modality
* VQA-T pretrained on HowTo100M: common pretraining approach for multi-modal transformers

Quantitative results on 5 VideoQA datasets:

m Pretraining Data MSRVTT-QA | MSVD-QA | ActivityNet-QA | How2QA |

Random 0.09 0.02 0.05 0.05 25.0
QA-T HowToVQAGSM 4.4 2.5 4.8 11.6 38.4
VOA-T HowTol100M 1.9 0.3 1.4 0.3 46.2

VQA-T HowToVQAG6SM  12.2 2.9 7.5 12.9 51.1



Zero-shot VideoQA with no manual
supervision of visual data

Qualitative examples on iVQA:

Question: What is the man cutting? Question: What is the largest object Question: What fruit is shown in the

GT answer: pipe at the right of the man? end?

QA-T (HowToVQA69M): onion GT answer: wheelbarrow GT answer: watermelon

VQA-T (HowTo100M): knife holder QA-T (HowToVQA69M): statue QA-T (HowToVQA69M): pineapple
Ours: pipe VQA-T (HowTo100M): trowel VQA-T (HowTo100M): slotted spoon

Ours: wheelbarrow Ours: watermelon



Benefits of HowToVQAG69M pretraining

Comparison with state-of-the-art on 4 VideoQA datasets:

HCRN [Le 2020] 35.6 36.1
SSML [Amrani 2020] HowTo100M 35.1 35.1 - -
HERO [Li 2020] HowTo100M - - - 74.1
ClipBERT [Lei 2021] COCO + VG 37.4 - - -
CoMVT [Seo 2021] HowTo100M 39.5 42.6 38.8 82.3
Ours (2) o 39.6 41.2 36.8 80.8

Ours HowToVQA69M 41.5 46.3 38.9 84.4



Conclusion

* We automatically generate a large-scale VideoQA dataset, HowToVQA69M, using text-only
supervision and videos with readily-available narration

* We show that our VideoQA model highly benefits from training on HowToVQA69M in a new
zero-shot VideoQA setting; additionally, after finetuning, our model improves the state-of-the-art
on 4 VideoQA datasets



