Just Ask: Learning to Answer Questions from Millions of Narrared Videos

Antoine Yang¹, Antoine Miech^{1,+}, Josef Sivic², Ivan Laptev¹, Cordelia Schmid¹

Project page: https://antoyang.github.io/just-ask.html

Paper: https://arxiv.org/abs/2012.00451

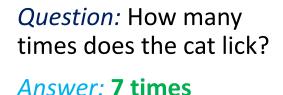
¹ Inria Paris / ENS ² CIIRC CTU ⁺ Now at DeepMind

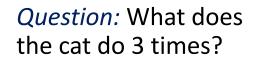
Video Question Answering (VideoQA)

VideoQA is a promising proxy task to evaluate video understanding

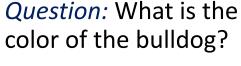
Open-Ended Question: Where are the men?

Answer: Track

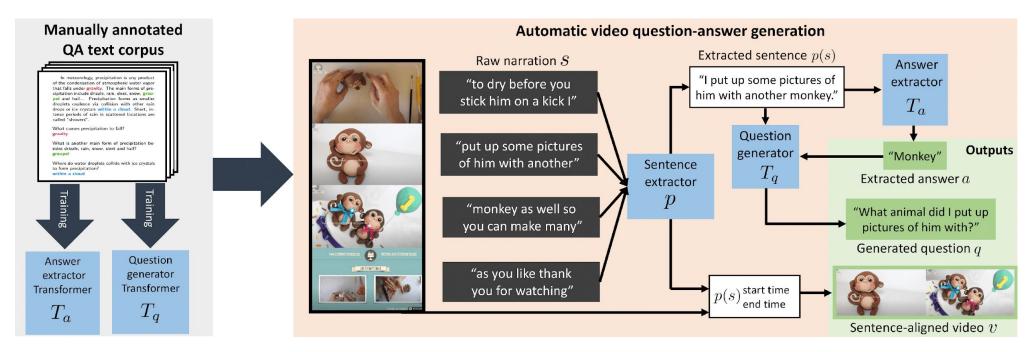

Multiple-Choice Question: What are the lined up men doing?


Proposal 1: Running Proposal 2: Talking Proposal 3: Shaving

VideoQA Challenges


- Data variability: VideoQA requires the ability to recognize actions, objects, colors at different spatio-temporal granularities
- Annotation: Obtaining manually annotated VideoQA data is expensive and not scalable

Answer: put head down Answer: brown

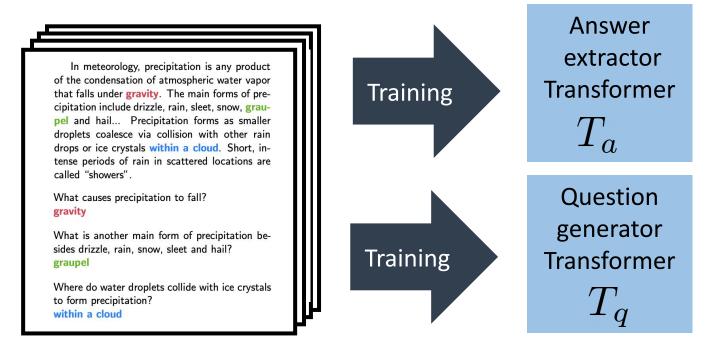


Just Ask: Method overview

- We automatically generate large-scale VideoQA data from narrated videos, relying on language models trained on text-only annotations
- We show how VideoQA models can benefit from such data, by tackling VideoQA without any manual supervision of visual data (*zero-shot*) or by finetuning our pretrained model

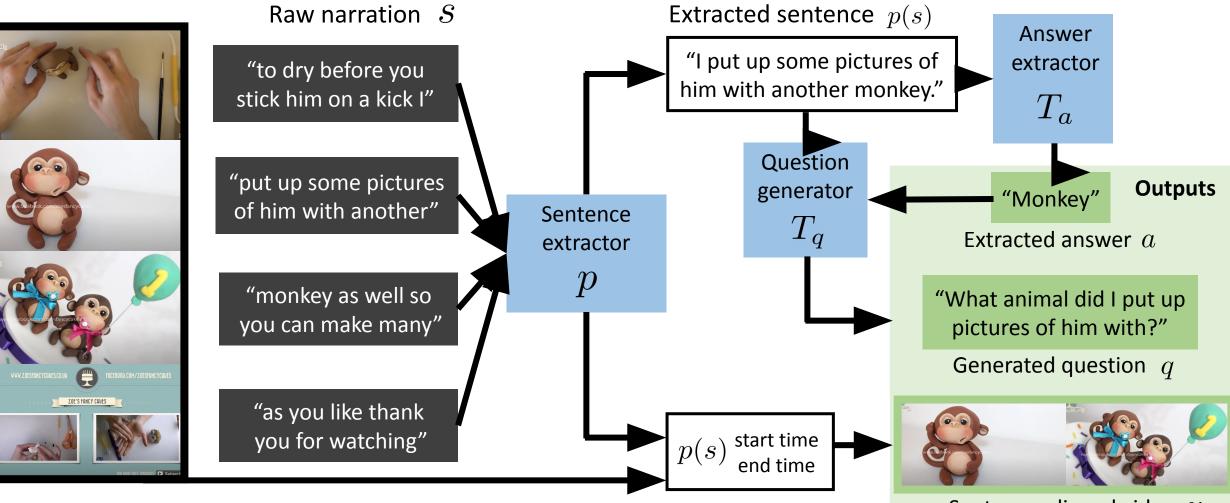
Weak supervision

- Narrated videos contain speech, therefore paired (video, speech) data is easy to obtain and abundant
- The weak correlation between the visual content and speech in narrated videos helped improve on other tasks [Miech 2019]



[Miech 2019] HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, A. Miech et al

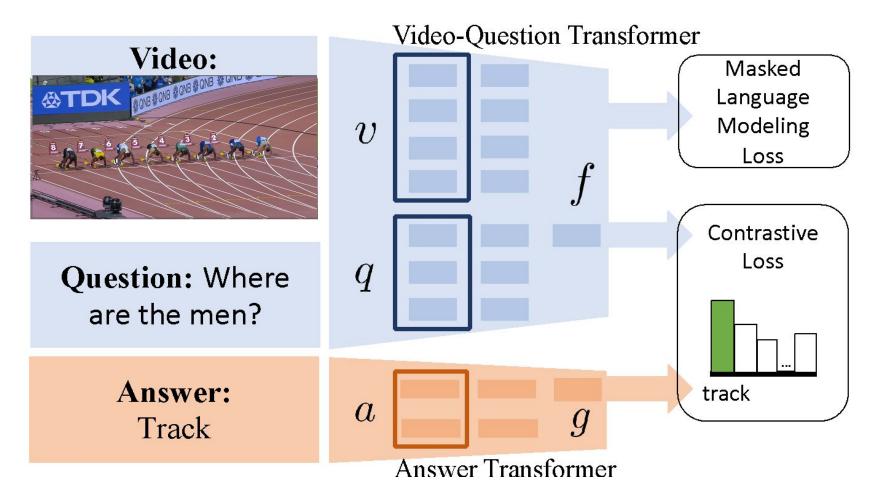
Text-only supervision for automatic generation of VideoQA data


To generate VideoQA data, we rely on language models [Raffel 2020] trained on text-only annotations

Manually annotated QA text corpus

[Raffel 2020] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, C. Raffel et al

Generating video-question-answer triplets


Sentence-aligned video v

HowToVQA69M: a large-scale VideoQA training dataset

We apply our generation pipeline to the videos from HowTo100M [Miech 2019] and obtain HowToVQA69M, a large-scale and noisy VideoQA dataset

		Incorrect QA Generation	Weak video-speech correlation
Generated outputs:	Question: What do we do at the bottom? Answer: cut it off	Question: What color did you peel on the other side? Answer: orange	Question: What can't you do? Answer: miss
Input Speech:	So you bring it to a point and we'll, just cut it off at the bottom.	Do it on the other side, and you've peeled your orange.	You can't miss this
		fork+ plate	

VideoQA model (*VQA-T*) and training procedure on HowToVQA69M

iVQA: a new VideoQA evaluation benchmark

- We manually collected an open-ended VideoQA dataset based on HowTo100M narrated videos
- It contains 10K videos, each annotated with 1 question and 5 corresponding correct answers

Question: What shape is the handcraft item in the end?

Zero-shot VideoQA with no manual supervision of visual data

We evaluate our VideoQA model VQA-T pretrained on HowToVQA69M with the following baselines:


- QA-T pretrained on HowToVQA69M: language-only variant, not using the visual modality
- VQA-T pretrained on HowTo100M: common pretraining approach for multi-modal transformers

Quantitative results on 5 VideoQA datasets:

Method	Pretraining Data	iVQA	MSRVTT-QA	MSVD-QA	ActivityNet-QA	How2QA
Random	Ø	0.09	0.02	0.05	0.05	25.0
QA-T	HowToVQA69M	4.4	2.5	4.8	11.6	38.4
VQA-T	HowTo100M	1.9	0.3	1.4	0.3	46.2
VQA-T	HowToVQA69M	12.2	2.9	7.5	12.9	51.1

Zero-shot VideoQA with no manual supervision of visual data

Qualitative examples on iVQA:

Question: What is the man cutting? GT answer: pipe QA-T (HowToVQA69M): onion VQA-T (HowTo100M): knife holder Ours: pipe

Question: What is the largest object at the right of the man? GT answer: wheelbarrow QA-T (HowToVQA69M): statue VQA-T (HowTo100M): trowel Ours: wheelbarrow

Question: What fruit is shown in the end?

GT answer: watermelon QA-T (HowToVQA69M): pineapple VQA-T (HowTo100M): slotted spoon Ours: watermelon

Benefits of HowToVQA69M pretraining

Comparison with state-of-the-art on 4 VideoQA datasets:

Method	Pretraining Data	MSRVTT-QA	MSVD-QA	ActivityNet-QA	How2QA
HCRN [Le 2020]	Ø	35.6	36.1	-	-
SSML [Amrani 2020]	HowTo100M	35.1	35.1	-	-
HERO [Li 2020]	HowTo100M	-	-	-	74.1
ClipBERT [Lei 2021]	COCO + VG	37.4	-	-	-
CoMVT [Seo 2021]	HowTo100M	39.5	42.6	38.8	82.3
Ours (∅)	Ø	39.6	41.2	36.8	80.8
Ours	HowToVQA69M	41.5	46.3	38.9	84.4

Conclusion

- We automatically generate a large-scale VideoQA dataset, HowToVQA69M, using text-only supervision and videos with readily-available narration
- We show that our VideoQA model highly benefits from training on HowToVQA69M in a new zero-shot VideoQA setting; additionally, after finetuning, our model improves the state-of-the-art on 4 VideoQA datasets