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Tasks

Visual Question Answering (VQA/VideoQA)

Visual Captioning
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A typical neural architecture (VideoQA)

Typical video representation: pretrained vision transformer [Dosovitskiy 2021]

Typical question representation: pretrained BERT [Devlin 2019]

Typical multi-modal fusion: transformer [Vaswani 2017]

Typical answer prediction module: classifier

Video
representation

Multi-modal Answer

_ o —» running
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Question
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What is the dog doing: Representation

[Dosovitskiy 2021] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , Dosovitskiy et al, ICLR 2021.
[Devlin 2019] Bert: Pre-training of deep bidirectional transformers for language understanding, Devlin et al, NAACL 2019.
[Vaswani 2017] Attention is all you need, Vaswani et al, NeurlIPS 2017.



A typical training procedure (VideoQA)
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Just Ask: Learning to
Answer Questions from
Millions of Narrated Videos

Antoine Yang, Antoine Miech, Josef Sivic, lvan Laptev, Cordelia Schmid
Project page: https://antoyang.github.io/just-ask.html
Paper: https://arxiv.org/abs/2012.00451

7 1794 :=

ENS



Challenges

* SoTA approaches use manual supervision
* Issues: Manual annotation for VideoQA is expensive. Large diversity of questions and videos.

* Problematic: How to tackle VideoQA with the least amount of manual supervision possible?

Manually annotated Training

(video, question, ‘ VideoQA

answer) triplets Model



Just Ask idea

e Automatically generate VideoQA training data from narrated videos.

* Rely on text-only annotations and cross-modal supervision.

Speech: The sound is amazing on this
piano.

Generated question: What kind
of instrument is the sound of?
Generated answer: piano



Text-only supervision

We use language models trained on a text-only question-answering corpus [Raffel 2020,
Suraj 2020, Rajpurkar 2016].
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[Raffel 2020] Exploring the limits of transfer learning with a unified text-to-text transformer, Raffel et al, JMLR 2020.
[Suraj 2020] Question Generation, Suraj, GitHub repository 2020.
[Rajpurkar 2016] SQUAD: 100,000+ questions for machine comprehension of text, Rajpurkar et al, arXiv 2016.



Weak supervision
iNn narrated videos

* Narrated videos are easy to obtain at scale.

* Assumption: weak correlation between the visual content and the speech [Miech 2019]
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[Miech 2019] HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, Miech et al, ICCV 2019.



Generating VideoQA data
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[Tilk 2016] Bidirectional recurrent neural network with attention mechanism for punctuation restoration, Tilk et al, Interspeech 2016.



HowToVQABIM: 3
large-scale VideoQA dataset

* Generated by applying our pipeline to HowTo100M [Miech 2019]
* 69M video-question-answer triplets
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Noise in HowToVQAG69SM

Speech: So you bring it to a
point and we'll, just cut it off
at the bottom.

Generated question: What do
we do at the bottom?
Generated answer: cut it off

v/

= 30%

Speech: Do it on the other side,
and you've peeled your orange.
Generated question: What color
did you peel on the other side?
Generated answer: orange

QA Generation error

=~ 31%

Speech: You can’t miss this...
Generated question: What
can’t you do?

Generated answer: miss

QA unrelated to video

=~ 39%



VideoQA model and

training procedure
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/ero-shot VideoQA:
guantitative results

Task definition: no manual supervision of visual data
* Importance of the visual modality
* |Importance of generating video-question-answer triplets

Quantitative results on 5 VideoQA datasets:

Method Pretraining Data iVQA MSRVTT-QA MSVD-QA ActivityNet-QA  How2QA
Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1
Random 0 0.09 0.9 0.02 0.2 0.05 0.5 0.05 0:5 25.0
QA-T HowToVQA6M | 44 23.2 2.5 6.5 4.8 15.0 11.6 45.8 384
VQA-T HowTol00M 19 11.9 0.3 34 1.4 10.4 0.3 1.9 46.2 j 7
VQA-T (Ours) HowToVQA69M | 12.2 43.3 29 8.8 T 224 12.2 46.5 51.1

Table 2: Comparison with baselines for zero-shot VideoQA. Top-1 and top-10 (for open-ended datasets) accuracy are reported.



/ero-shot VideoQA
gualitative results

= e

GT answer: pipe

QA-T (HowToVQA69M): onion
VQA-T (HowTo100M): knife holder
Just Ask: pipe

Source of the examples: iVQA dataset

Question: What is the man cutting? Question: What is the largest

object at the right of the man?
GT answer: wheelbarrow
QA-T (HowToVQAGB9M): statue
VQA-T (HowTo100M): trowel
Just Ask: wheelbarrow

Question: What fruit is shown in the
end?

GT answer: watermelon

QA-T (HowToVQA69M): pineapple
VQA-T (HowTo100M): slotted spoon
Just Ask: watermelon



Online Demo
http://videoqga.paris.inria.fr/

Just Ask VideoQA Demo . . . .
Video Question Answering on iVQA
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Results after finetuning

SoTA on 4 existing VideoQA datasets

. . ActivityNet

Method Pretraining data | MSRVTT-QA MSVD-QA Pretraining data Q/z How2QA
E-SA [87] 29.3 27.6 E-SA [94] 31.8 —
ST-TP [35] 30.9 31.3 MAR-VQA [105] 34.6 —
AMU [27] 32.5 32.0 HowTol100M +
Co-mem [27] 32.0 317 HERO [44] TV Dataset — 7l
HME [23] 33.0 33.7 CoMVT [6%] HowTol100M 38.8 82.3
LAGCN [33] — 34.3 VQA-T 0 36.8 80.8
HGA [37] 35.5 34.7 VQA-T HowToVQA69M 38.9 84.4
QueST [36] 34.6 36.1 Table 5: Comparison with state of the art on ActivityNet-QA and
HCRN [42] COCO [15] 35.6 36.1 the public val set of How2QA (top-1 accuracy).

_ +
ClipBERT [44] Visual Genome [41] 37.4 -
SSML [6] HowTol100M 35.1 35.1
CoMVT [6%] HowTol100M 39.5 42.6
VQA-T 0 39.6 41.2
VQA-T HowToVQA69M 41.5 46.3

Table 4: Comparison with state of the art on MSRVTT-QA and
MSVD-QA (top-1 accuracy).



/ero-Shot Video Question
Answering via Frozen
Bidirectional Language Models

Antoine Yang, Antoine Miech, Josef Sivic, lvan Laptev, Cordelia Schmid
Project page: https://antoyang.github.io/frozenbilm.html
Paper: on arXiv by end of June
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Challenges

SoTA models for zero-shot VQA are based on frozen autoregressive language models

Issues: They require billion parameters to work well => hard to train and deploy in practice.

Problematic: Can we tackle zero-shot VideoQA with lighter models?

Idea: Use bidirectional language models!

Autoregressive language models

The -> dog

The dog -> is

The dog is -> running

The dog is running -> in

The dog is running in -> the

The dog is running in the -> snow

The dog is running in the snow -> EOS

Bidirectional language models (BiLM)

The dog is [MASK] in the snow -> running



Multi-modal adaptation of a Frozen BiLM
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Training data: videos with alt-text description

* Videos with alt-text description are easy to obtain at scale.

e Such data is less noisy than narrated videos [Bain 2021].

Lonely beautiful woman sitting on the tent looking outside.
wind on the hair and camping on the beach near the colors of Female cop talking on walkietalkie, responding
water and shore. freedom and alternative tiny house for traveler emergency call, crime prevention
lady drinking.

Billiards, concentrated young woman playing in club.

[Bain 2021] Frozen in Time: A Joint Video and Text Encoder for End-to-End Retrieval, Bain et al, ICCV 2021.



/Zero-shot inference through unmasking

* Open-ended VideoQA:
““[CLS] Question: <Question>? Ansver: [MASK]:_Subfitles: <Subtitles> [SEP]”’
* Multiple-choice VideoQA:

““[CLS] Question: <Question>? Is it ’<Answer Candidate>’? [MASK]. Subtitles:
<Subtitles> [SEP]”’

* Video-conditioned fill-in-the-blank:
“‘[CLS] <Sentence with a [MASK] token>. Subtitles: <Subtitles> [SEP]”’



Ablation: Modalities

* Vision is essential.

* Speech helps.

Vil ‘Sgoeck Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA | How2QA TVQA

1. X X 479 11.0 6.4 113 22.6 323 29.6 232 m
y A { v/ 49.8 13.2 6.5 11.7 23.1 323 459 44.1
3. / X 50.9 26.2 16.9 33.7 259 419 419 29.7
4 Y ¥ 4 515 26.8 16.7 338 259 419 584 59.2

Table 2: Impact of the visual and speech modalities on zero-shot VideoQA. Rows 1 and 2 report results for
a pretrained language model without any visual input. Rows 3 and 4 give results for a FrozenBiLM model
pretrained on WebVid10M.



Ablation: Model Training

* Freezing the pretrained BiLM considerably helps.
* Adapters help.

LM Frozen Adapters Fill-in-the-blank

Open-ended Multiple-choice
Pretraining LM LSMDC iIVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA | How2QA TVQA
L. X X X 0.5 03 0.1 0.0 0.5 0.0 324 20.7
2. v X X 37.1 210 17.6 319 20.7 30.7 457 456
3. v v/ X 50.7 273 16.8 322 247 41.0 535 534 ab
- v 4 v 51.5 26.8 16.7 338 259 419 584 59.2

Téble 1: The effect of initializing and training various parts of our model evaluated on zero-shot VideoQA.

All
models are trained on WebVid10M and use multi-modal inputs (video, speech and question) at inference.



Bidirectional vs autoregressive frameworks

Bidirectional models perform better, train faster and require less parameters.

Method Language Model # LM params T('g‘l',‘L“;{“f iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA

I.GPT-Neo-1.3B 1.3B 200 | 66 32 10.1 17.8 144
Autoregressive 2. GPT-Neo-2.7B 2.7B 360 9.1 1.7 17.8 17.4 20.1

3. GPT-J-6B 6B 820 |214 9.6 26.7 24.5 37.3

4. BERT-Base 110M 24 | 124 6.4 11.7 16.7 23.1
Bidirectional 5. BERT-Large 340M 60 |129 7.1 13.0 19.0 21.5

6. DeBERTa-V2-XLarge| 890M 160 |273 16.8 32.2 24.7 41.0

Table 4: Comparison of autoregressive language models (top) and bidirectional language models (bottom) for
zero-shot VideoQA. All variants are trained on WebVid10M for the same number of epochs.



/ero-shot quantitative results

SoTA on 8 datasets spanning fill-in-the-blank, open-ended VideoQA and multiple-choice VideoQA.

Method Training Data Fill-in-the-blank Open-ended Multiple-choice
LSMDC 1IVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA|How2QA TVQA
Random — 0.1 0.1 0.1 0.1 0.1 0.1 25 20
CLIP ViT-L/14 [68] 400M image-texts 1.2 9.2 2.1 7.2 i5 36 477 261
JustAk[97] g = 133 56 135 123 S| Y Y
Reserve [105] YT-Temporal-1B 310 - 58 — — — — —
FrozenBilM (Ours) WebVid 10M 515 26.8 16.7 338 25.9 41.9 584 59.7

Table 5: Comparison with the state of the art for zero-shot VideoQA.




/ero-shot qualitative results (open-ended)

Question: What is the man holding
at the start of the video?

GT answer: guitar, electric guitar
Just Ask: typewriter
UnFrozenBiLM: beer
FrozenBiLM (text-only): scissors
FrozenBiLM: guitar

Question: What item hanging on
the wall features a tree?

GT answer: quilt

Just Ask: christmas tree
UnFrozenBilLM: fabric
FrozenBiLM (text-only): tree
FrozenBiLM: quilt

Question: Which category of
sports does this sport belong to?
GT answer: surfing

Just Ask: second
UnFrozenBiLM: swimming
FrozenBiLM (text-only): 1
FrozenBiLM: surfing



/ero-shot qualitative results (fill-in-the-blank)

Sentence: Each singer in the Sentence: Someone  himto Sentence: A woman wraps food in
frontrow _ a huge toad. the truck and across the street. newspapers and brings it over to
GT answer: holds GT answer: chases their

UnFrozenBiLM: plays UnFrozenBiLM: follow GT answer: table

FrozenBiLM (text-only): wears FrozenBiLM (text-only): drags UnFrozenBiLM: man
FrozenBiLM: holds FrozenBiLM: chases FrozenBiLM (text-only): home

FrozenBiLM: table



/ero-shot qualitative results (multiple-choice)

Question: When did the chef UnFrozenBiLM: A3
flipped over the layer of rice and FrozenBiLM (text-only):A1
seaweed? FrozenBiLM: A0

GT answer: holds

AO: after she sprinkled sesame
Al: after she added cucumber
A2: after she added fish

A3: after she cut the cucumbers



Results after finetuning

* Freezing the BiLM also helps in the fully-supervised setting.

* SoTA on 6 out of 8 datasets + high parameter efficiency.

Method # Trained|Fill-in-the-blank Open-ended Multiple-choice
Params LSMDC |VQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA|How2QA TVQA
HCRN [42] 44M — 354 36.8 — 579 - 714
HERO [51] 1I9M — — — o 74.1 736
ClipBERT [45] 114M — — 37.4 — — 60.3 - —
Just Ask [97] 15T — 354 418 475 39.0 — 85.3 —
SiaSamRea [102] — — - 416 455 39.8 60.2 84.1 —
MERLOT [104] 223M 529 — 43.1 — 414 69.5 - 78.7
Reserve [105] 644M — —_ — — — — —_ 86.1
VIOLET [19] 198M 53.7 — 439 479 - 68.9 — —
All-in-one [90] 110M — - 46.8 483 — 66.3
UnFrozenBiLM (Ours) 890M 8.9 3.7 45.0 339 432 66.9 873 79-6_
FrozenBiLM (Ours) 30M 63.5 39.6 47.0 548 43.2 68.6 86.7 82.0

Table 6: Comparison with the state of the art, and the variant UnFrozenBiLM which does not freeze the language
model weight, on fully-supervised benchmarks.



Conclusion

e Zero-shot video question answering can be tackled by generating training data using language
models and narrated videos

* It can also be efficiently tackled without data generation procedure using frozen bidirectional
language models



